摘要
针对现有卫星观测任务可调度性预测模型难以建模长时间间隔的观测任务依赖关系的问题,提出一种基于双向门控循环单元(Bidirectional Gated Recurrent Unit,Bi-GRU)的卫星对地观测任务可调度性预测模型.该模型以卫星历史规划方案作为学习样本,能够以较低计算代价较高准确率地预测出对地观测任务集合中可以被响应的子集.该模型首先通过多层全连接感知机神经网络提取任务属性间的关联关系,然后采用多组多层双向门控循环单元组成的循环神经网络提取观测任务与其前驱及后继观测任务序列的潜在时序特征,最后融合各组双向门控循环单元的预测结果,从而利用观测任务之间的正向与反向信息依赖关系提升任务可调度性预测准确度.实验结果表明,与现有主流预测模型相比,本文提出方法在准确率、精确率、召回率和F1分数等指标上分别提升了2.27%、2.36%、3.45%和2.37%.
- 单位