摘要
地区电网负荷特性易受环境温度影响,导致负荷辨识结果往往存在较大偏差,研究了基于残差卷积神经网络的温度敏感负荷辨识方法,有效提高负荷辨识准确率。首先,利用基准负荷比较法,构建了商业各企业基准日负荷曲线;其次,利用皮尔逊相关系数法,筛选出与温度相关性强的温度敏感负荷,同时采用多项式回归模型进一步分析温度敏感负荷与实时温度变化的规律,量化温度因素的影响程度;最后,针对温度敏感负荷,提出利用负荷与温度的多项式回归模型系数构建动态温度敏感负荷特征库,作为辨识模型的输入。将基于残差卷积神经网络的负荷辨识结果与传统卷积神经网络负荷辨识结果进行对比,前者的辨识准确率有较大提升。
-
单位河海大学; 电气学院