摘要

家庭负荷识别是实现需求侧精细化管理的关键。针对现有家庭负荷辨识研究中对所提取特征贡献度及相关性分析不足的问题,提出了基于ReliefF与互信息结合的特征评价、筛选的家庭负荷类型辨识方法。文中在现有研究基础上提取了16个家庭负荷运行暂、稳态特征,对其权重及特征间相关性进行分析,筛选了其中辨识效果最优的特征组合,利用基于粒子群优化的支持向量机(Support Vector Machine based on Particle Swarm Optimization,PSOSVM)分类模型对实测数据样本进行了辨识。算例结果验证了所提算法的准确性和优越性。