针对SVM二叉树多类分类优先级的确定问题,通过旋转机械故障实验平台和数据采集系统,采集旋转机械故障实验台转子正常、转子不平衡、转子不对中、转子轴承内圈裂缝、转子轴承外圈裂缝5种工况下的振动信号,进行零均值化处理;选择信号的主要频段进行信号重组,提取其时域无量纲特征值,利用并联式SVM的正检率大小确定SVM二叉树多类分类的优先级,进行故障类型的识别。通过实验,实现了训练样本的完全可分,说明此种方法的有效性。