摘要
Pegasos算法是求解大规模支持向量机问题的有效方法,在随机梯度下降过程中植入多阶段循环步骤,能使该算法得到最优的收敛速度O(1/T)。COMID算法是由镜面下降算法推广得到的正则化随机形式,可保证正则化项的结构,但对于强凸的优化问题,该算法的收敛速度仅为O(logT/T)。为此,在COMID算法中引入多阶段循环步骤,提出一种求解L1+L2混合正则化项问题的最优正则化镜面下降算法,证明其具有最优的收敛速度O(1/T),以及与COMID算法相同的稀疏性。在大规模数据库上的实验结果验证了理论分析的正确性和所提算法的有效性。
- 单位