摘要
借鉴自然界生态系统的典型特征,提出机器人生态圈概念。通过使集群机器人进行智能协同与复杂演化,涌现自我维持、自我复制与自我进化等生命特征,实现无人条件下的长期生存、繁衍与进化,并执行特定的任务。针对机器人生态圈典型任务场景的自主任务决策需求,分析不同机器学习任务决策方法的特点,建立机器人生态圈自主任务决策的决策树模型和神经网络模型。分析表明,两种模型的正确率均在80%~90%,且均具有良好的稳定性。这说明,机器人生态圈自主任务决策问题可以通过决策树、神经网络等机器学习方法来很好地加以解决,从而为面向无人化场景的任务应用提供技术支持。