摘要

针对MEMS陀螺仪测量精度低、随机噪声具有不确定性和非线性的问题,提出一种基于最大期望算法(Expectation maximum, EM)和极大后验估计(Maximum a posterion, MAP)的无迹卡尔曼滤波(Unscented Kalman filter, UKF)——EMMAP-UKF的陀螺噪声估计与滤波方法。根据极大后验估计原理,构造出一种次优无偏MAP噪声统计估计模型,并在此基础上引入最大期望算法将噪声估计问题转换为数学期望极大化问题,实现对观测噪声方差的动态调整,最终实现陀螺仪随机漂移误差的估计与滤波处理。最后通过Allan方差对陀螺噪声滤波方法的性能进行评估,通过半实物仿真验证了本方法的有效性。