摘要

为对抗假脸视频的危害,研究者目前已经提出了多种不同的基于卷积神经网络(convolutional neural networks, CNN)的假脸视频检测器,然而这些检测器所存在的一个共同问题是库内检测通常能达到较高的准确率,但跨库检测时性能出现严重下降,即存在严重的泛化能力不足问题.该文对基于MesoInception-4、MISLnet、ShallowNetV1、Inceptionv3、Xception这5种流行网络的假脸视频检测器,在现有3个假脸视频库上进行库内和跨库测试,重点分析数据库的划分方式、数据增广操作以及检测阈值选取这3个因素对假脸视频检测器泛化能力的影响.