摘要

目的 针对传统卷积神经网络训练时间长、易过拟合、故障诊断精度低、抗噪能力差等问题,提出一种基于压缩采集特征提取与CNN_SVM的滚动轴承的故障诊断模型,降低滚动轴承故障数据的冗余度。方法 首先,使用压缩采集技术去除实验样本中的冗余信息;然后,使用三层卷积神经网络(CNN)对采集数据进行故障特征提取,在网络中加入Dropout层、Batch Normalization层、全局平均池化层来防止网络的过拟合,加强网络提取特征的能力;最后,用多分类支持向量机(SVM)对提取特征进行分类。结果 研究表明:模型对故障诊断精度达到了99.4%,比CNN_SVM,PCA_SVM,1D_CNN等模型故障诊断效果突出,对含噪的实验数据具有去噪功能。结论 笔者所提出的模型诊断精度高,且具有很强的学习能力和降噪能力。