摘要

教学质量评价是教学研究中的重点之一,但已有的数学评价模型不适合解决非线性问题,神经网络模型收敛速度慢、准确率不高。针对以上问题,文中提出一种基于改进PSO(Particle Swarm Optimization)-BP(Back Propagation)神经网络的教学质量评价模型。通过引入动量和自适应学习率优化BP神经网络,采用惯性权重线性递减、学习因子异步变化,并引入速度收缩因子和自适应变异策略来优化PSO算法;再使用PSO粒子群优化算法计算BP神经网络的初始连接权重和阈值,从而提升模型的全局寻优能力和收敛速度、精度。为验证模型效果,使用评价体系指标层的10个指标数据作为模型的输入,评价结果作为输出,进行模型对比实验。实验结果表明,所提模型的准确率达到96.33%,比一般BP神经网络模型提高4.68%,比自适应BP神经网络模型提高4.07%,比PSO-BP神经网络模型提高1.2%,且收敛曲线平稳,整体性能优于其他模型,说明运用该模型能够有效地对教学质量进行评价。

全文