摘要

针对5G系统中的高速率低时延的需求,传统的信道估计算法难以满足要求的问题,将通信信道的时频响应视为二维图像,提出了一种基于图像恢复技术的信道估计方法。首先,设定参数产生基于5G 新空口(New Radio, NR)标准的物理下行链路共享信道(Physical Downlink Shared Channel, PDSCH)的信道数据信息数据集,将所产生的信道矩阵看作二维图像;然后,构建基于卷积神经网络的图像恢复网络,并融入残差连接来提高网络的性能;最后,利用训练好的网络模型进行信道估计。仿真结果表明,与最小二乘算法(Least Square, LS)、实际信道估计(Practical Channel Estimation, PCE)和基于图像超分辨率ChannelNet网络相比,所提出的信道估计算法性能提升明显。