摘要

给出了Logistic模型中对缺失协变量数据的一种估计方法。将Marc Lavielle等人提出的SAEM算法进行了改进,引入Samiran Sinha等人提出的一种基于不可忽视机制基础上的NI-机制,以此来尽可能的利用数据中已存在的信息,并将其与现有处理缺失协变量较好的MCAR缺失机制下的半参数方法做对比研究。对Logistic模型的参数分别进行估计,对比分析这两种方法在不同缺失率下的优劣,并对最终结果进行回判,将回判准确率与标准误差作为判别标准。结果表明,当缺失率较小时,两者对缺失数据的处理性能都很好;但当缺失率较高时,半参数方法对数据的处理性能要优于SAEM算法。SAEM算法的运行速度始终快于半参数方法,缺失率较小时,用提出的SAEM算法做线上估计比半参数方法更具有优势。