摘要

<正>美国数学家盖尔鲍姆提出:“数学由证明和反例构成,并朝着证明与反例构造发展.”反例是指通过变换事物的属性,引发思辨,从反面凸显出事物的本质属性的例证.证明是通过已知为真来确定某一事物的真实性,反例则是用已知为真揭露另一个判断是虚假的,两者的目的都是为了揭露事物的本质属性,它们呈相辅相成的关系.新课标明确提出:“数学教学应用实例进行合情推理,让学生在猜测、探索、演绎推理中确定结论的正确性,或构造反例来驳回错误的猜想.”