摘要
基于车辆轨迹数据的道路信息提取是地理信息领域的热点也是难点之一,传统方法面临着轨迹数据源要求高、道路提取算法复杂、不同道路提取模型参数适应性不强等问题。针对以上问题,提出基于条件生成式对抗网络的轨迹地图向道路地图转换的轨迹-道路转换方法。该方法以轨迹数据与道路数据的对应关系为先验知识,通过"生成-博弈"的不断循环逐渐逼近最优结果,学习优化条件生成式对抗网络模型参数。首先将轨迹数据栅格化处理,然后基于样本数据学习优化条件生成式对抗网络参数,最后将训练好的模型应用到整个实验区域提取道路数据,发现所提方法可以有效地发现新增道路;同时将训练好的轨迹-道路转换模型与栅格化道路提取方法对比,发现所提方法在轨迹稀疏稠密区域都有更强的轨迹数据适应性,且生成的道路精确率更高。
-
单位信息工程大学; 信息工程大学地理空间信息学院