摘要

目的分析我国2010—2019年流行性感冒的流行特征和分布规律,预测各亚型流感发病趋势。方法 采用ARIMA乘积季节模型,对流感数据进行原始序列预处理、模型识别、参数估计和统计建模,预测流感发病趋势。结果 构建流感自回归移动平均模型(ARIMA)乘积季节模型,预测模型为ARIMA(1,2,1)(0,1,1)12,数据信息提取充分(Q=14.257,P>0.05),相对误差约10%;甲型流感预测模型为ARIMA(2,1,1)(0,2,2)12,数据信息提取充分(Q=13.236,P>0.05),预测2018年12月至2019年3月的甲型流感发病率较高,4月份开始,发病率迅速下降,与实际情况相似,相对误差控制在10%以内;乙型流感预测模型为ARIMA(1,2,1)(1,0,1)12,数据信息提取充分(Q=9.841,P>0.05),但模型预测2019年乙型流感发病率较低,相对误差较高。结论 流感、甲型流感ARIMA乘积季节模型预测效果较好;乙型流感预测模型数据信息提取充分,但相对误差较高,可能与乙型流感发病无明显的长期趋势有关。