摘要

针对在噪声干扰下多重扰动识别正确率不高的问题,提出一种新的基于深度置信网络的电能质量扰动分类方法。首先,对电能质量扰动信号进行平稳小波多尺度变换,再利用软阈值函数处理估计小波系数重构原始信号,从而实现对电能质量扰动信号的去噪。再利用软阈值函数处理估计小波系数重构原始信号,从而实现对电能质量扰动信号的去噪。然后进一步提出利用深度置信网络对重构后的单一扰动信号和多重扰动信号进行分类识别。最后算例显示,即使在20 dB噪声干扰下,其分类正确率高达到93%以上。结果表明该方法对7种单一扰动和13种多重扰动信号的识别正确率均较高,验证该方法具有较强的抗噪声干扰能力。