摘要

针对对于风能规划和应用都具有重大影响的风速存在强随机性问题,该文提出结合卷积神经网络(CNN)和共享权重长短期记忆网络(SWLSTM)的空时融合模型(CSWLSTM),充分提取风速序列中蕴含的空域和时域信息,以提升预测精度。此外,为了获得可靠的风速概率预测结果,提出一种新的结合CNN、SWLSTM和高斯过程回归(GPR)的混合模型,称为CSWLSTM-GPR。将CSWLSTM-GPR应用于中国内蒙古风速预测案例,从点预测精度、区间预测适用性和概率预测综合性能3个方面与相同结构的CNN和SWLSTM模型的风速预测方法进行比较。CSWLSTM-GPR的可靠性测试保证了预测结果的可靠性和说服力。实验结果表明,CSWLSTM-GPR在风速预测问题上能获得高精度的点预测、合适的预测区间和可靠的概率预测结果,也充分展现了该研究所提出CSWLSTM在风速预测方面具有较好的应用潜力。

全文