摘要
为解决软件定义网络(SDN)中的流量工程(TE)问题,提出了一种深度强化学习路由(DRL-Routing)算法.该算法使用较全面的网络信息来表示状态,并使用一对多的网络配置来进行路由选择,奖励函数可以调整往返路径的网络吞吐量.仿真结果表明,DRL-Routing可以获得更高的奖励,并且经过适当的训练后,能使各交换机之间获得更优的路由策略,从而增大了网络吞吐量,降低了网络延迟和数据丢包率.
- 单位
为解决软件定义网络(SDN)中的流量工程(TE)问题,提出了一种深度强化学习路由(DRL-Routing)算法.该算法使用较全面的网络信息来表示状态,并使用一对多的网络配置来进行路由选择,奖励函数可以调整往返路径的网络吞吐量.仿真结果表明,DRL-Routing可以获得更高的奖励,并且经过适当的训练后,能使各交换机之间获得更优的路由策略,从而增大了网络吞吐量,降低了网络延迟和数据丢包率.