摘要

针对轻量化网络在目标检测中检测精度低的问题,提出了一种以MobileNet为基础网络的轻量级目标检测网络MobileNet-RFB-ECA。针对目标多尺度特性,采用基于轻量化扩充感受野模块(RFB)的特征金字塔网络结构增强网络对目标多尺度特性的适应性。与此同时,针对复杂注意力模块导致计算量大的问题,在主干特征提取网络添加有效通道注意力机制模块(ECA),提高卷积神经网络的性能。实验结果表明,相较于MobileNet,所提MobileNet-RFB-ECA在PASCAL VOC数据集和KITTI数据集上检测精度分别提高了4.2个百分点和15.4个百分点,模型大小分别为50.3 MB和48.5 MB,平均检测速度为34 frame·s-1。