目前通过卷积神经网络(CNN)进行监督式学习已经在计算机视觉领域得到了广泛应用,而采用CNN的无监督学习则受到的关注较少。针对这一问题,利用深度卷积生成对抗网络(DCGAN)的方法,该网络由卷积神经网络构成,通过生成对抗网络对现有的人脸数据集进行数据训练,生成对抗网络学习了生成器和判别器中对图像局部特征到整体场景的表示层次,输出由各人脸特征组合而成的新人脸数据。通过在各种图像数据集上进行训练,弥补图像数据的不足,实现提高识别准确率的目的,表明该方法在无监督学习上的实用性。