摘要

为充分利用多时相、多极化SAR数据在不同土地覆盖类型中的后向散射特性,将递归非负矩阵下近似(Recursive nonnegative matrix underapproximation,RNMU)算法引入多源SAR数据的融合,并利用融合后的SAR影像实现较高精度的土地覆盖分类。融合过程中,在根据不同模式SAR影像特点进行多源SAR影像预处理的基础上,基于RNMU算法通过对多个输入SAR影像进行矩阵分解及迭代最优矩阵求解,得到融合影像。为验证融合后SAR影像在土地覆盖分类中的应用效果,以吉林省大安市为研究区,对多时相Sentinel-1的VV/VH双极化SAR数据和高分三号(GF-3)的HH/HV双极化SAR数据进行了基于RNMU的影像融合,并利用融合后的SAR影像进行研究区主要土地覆盖类型分类。实验结果表明,基于RNMU融合影像的土地覆盖分类总体精度达93. 11%,Kappa系数为0. 86,与Gram-Schmid(G-S)融合方法相比,分类总体精度提高了6. 83个百分点,Kappa系数提高0. 12。多源SAR融合为SAR影像融合提供了有效手段,为土地覆盖分类提供了更多高精度的数据资源。