摘要

铁路安全问题中由障碍物造成的安全事故占比大,后果严重。目前,铁路障碍物的检测方法存在检测精度低、实时性差的问题,并且需要耗费大量人力。为此,文中将目标检测技术应用到铁路障碍物检测中,通过实时监控预警辅助人工巡检,提高检测效率。首先选取Faster R-CNN和SSD两种目标检测算法,根据特征提取网络性能对比,选择两种性能较好的特征提取网络VGG-16和MobileNet-v2,完成4种目标检测模型的搭建;然后通过修正参数训练,对两种模型进行对比,确定最佳模型为SSD_VGG-16;最后在此基础上,从反卷积特征融合方面入手,对模型进行改进。测试结果表明:改进后的New_SSD_VGG-16模型的平均精度(mAP)为82.4%,单张图片平均检测时间为0.071 s;相较于Faster R-CNN及未改进的SSD_VGG-16模型,文中模型在保证一定检测准确率的同时,还可以提升检测速度。