摘要

为了探索地震加速度时程记录的震级信息,训练卷积神经网络基于地震震级大小对地震记录进行分类,将K-NET和KiK-net中将近12万个地震记录作为样本,对其进行信息筛选和归一化,之后将地震加速度时程记录用作输入,训练卷积神经网络模型以M5.5为分类界限来区分大震和小震。结果显示,在训练集中基于该模型的分类准确率为93.6%,在测试集中的准确率为92.3%,具有良好的分类效果,这表明大震记录与小震记录之间存在一些根本的区别,即可通过地震动加速度时程记录获取一定的震级信息。