摘要

慢性萎缩性胃炎是一种常见的胃病,如果得不到及时治疗,有可能发展成胃癌。然而,胃镜检查在萎缩性胃炎检查中的敏感性仅为约42%,且活检受许多因素的影响。因此,使用卷积神经网络有助于提高诊断慢性萎缩性胃炎的准确性。首先采用INPAINTTELEA算法对胃窦图像进行预处理,去除图像中的水印,对残差网络进行改进并嵌入SqueezeandExcitaion模块以筛查慢性萎缩性胃炎,改进后的网络(SR-CAGnet)通过建立短路机制以及采用特征重标定策略提高图像的分类效果。结果表明:与Alexnet和改进的ResNet网络进行对比,SR-CAGnet对慢性萎缩性胃炎的检出率为87.92%,算法识别效果良好。通过使用Apriori算法并分析,得到萎缩性胃炎与胃镜检查下其他症状的关系,以辅助医生的诊断。最后使用CAM热图验证模型的有效性。