摘要

针对真实环境下多目标表情分类识别算法准确率低的问题,提出一种基于改进的快速区域卷积神经网络(Faster RCNN)面部表情检测算法。该算法利用二阶检测网络实现表情识别中的多目标识别与定位,使用密集连接模块替代原始的特征提取模块,该模块能够融合多层次特征信息,增加网络深度并避免网络梯度消失。采用柔性非极大抑制(soft-NMS)改进候选框合并策略,设计衰减函数替换传统非极大抑制(NMS)贪心算法,避免相邻或重叠目标漏检,提高网络在多目标情况下的检测准确率。通过构建真实环境下的表情数据集,基于改进的Faster RCNN进行实验测试,在不同场景中能够检测出目标的面部表情,检测准确率相比原始检测模型提高5%,取得较好的检测精度。