行人重识别是指实现不重叠的不同摄像头下同一行人图像的匹配技术,在加强社会管理、预防犯罪行为发生以及实现事件重构等方面具有重要应用价值.由于行人重识别主要依靠人体外表视觉表示特征和人工设计特征,且受光照、图像分辨率、行人姿态及拍摄视角度等因素的影响较大,因此,行人重识别面临巨大挑战.本文对现有行人表示特征学习技术及度量技术进行了综述分析,指出存在的问题及可能的解决思路.本文的论述有利于该领域研究人员对现状的把握及提出新的研究思路.