摘要

蒙特卡罗MC方法是核反应堆设计和分析中重要的粒子输运模拟方法。MC方法能够模拟复杂几何形状且计算结果精度高,缺点是需要耗费大量时间进行上亿规模粒子模拟。如何提高蒙特卡罗程序的性能成为大规模蒙特卡罗数值模拟的挑战。基于堆用蒙特卡罗分析程序RMC,先后开展了基于TCMalloc动态内存分配优化、OpenMP线程调度策略优化、vector内存对齐优化和基于HDF5的并行I/O优化等一系列优化手段,对于200万粒子的算例,使其总体性能提高26.45%以上。