摘要
为了从齿轮振动信号中提取出包含有故障信息的特征频率,针对现有EMD(Empirical Mode Decomposition)降噪算法中的IMF重构问题,提出了基于EMD模态相关和形态学降噪的齿轮故障诊断方法。首先采用EMD将目标信号分解为若干个IMF分量之和,利用模态相关分选准则选取噪声主导分量和信号主导分量的分界点,并利用各个IMF分量的自相关函数来验证该准则的正确性;然后将选到的噪声主导分量进行形态学滤波,利用峭度准则优化形态学结构元素尺度,自适应的寻求最优解;最后将滤波后的噪声分量与剩余分量进行重构,得到滤波重构信号,通过频谱分析识别齿轮故障特征频率。仿真数据和齿轮裂纹故障实验测试数据的分析表明,该方法滤波效果理想,能更有效地提取出齿轮故障特征。
- 单位