摘要
本研究提出了一种基于深度学习的废钢快速识别方法,提出的基于Inception-ResNet-V2的改进网络结构添加注意力机制模块经过微调得到SE-Inception-ResNet,并在此基础上采用学习率梯度更新策略自适应调节优化模型。采集了四种类型的废钢数据,然后将样本图像按80%训练集,20%验证集进行训练。后与ResNet152、InceptionV3比较了模型的性能。结果表明,SE-Inception-ResNet、InceptionV3和ResNet152网络的总体分类准确率分别为98.10%、97.48%、95.67%。SE-Inception-ResNet的分类精度最高,该模型在不同学习率情况下能快速梯度收敛。实验结果表明,所提出的改进卷积神经网络模型能够有效地对废钢类型进行识别。同时期望提高其迁移学习模型泛化性,可以为其他快速分类鉴定提供参考,并应用于其他工业或商业领域。
-
单位重庆交通大学; 重庆市勘测院