摘要
极限学习机(Extreme Learning Machine,ELM)是一种新型的单隐含层前馈神经网络,与传统神经网络训练方法相比,ELM具有泛化能力好、学习速率快等优点。但随机产生的输入权值和阈值,往往会出现一些作用很小或"无用"的值,为了达到理想精度,通常需要增加隐含层节点数。思维进化极限学习机使用思维进化算法MEA优化输入权值矩阵和阈值向量,再利用MP广义逆求出输出权值矩阵,从而减小隐含层节点数,增大网络预测精度。通过函数拟合仿真实验,并同ELM算法和BP神经网络算法比较,思维进化极限学习机算法可以用较少的隐含层节点数实现更高的精度。
- 单位