摘要

针对含固定效应的面板数据,讨论一般化的无条件分位数回归建模问题。基于两个矩条件,得到面板数据无条件分位数回归的点估计,并通过Bootstrap重抽样技术进一步给出置信区间估计办法。其次,通过计算机蒙特卡洛模拟,详细比较无条件分位数回归估计与条件分位数回归估计的效果。研究结果表明,在数据量、误差项分布、估计参数真实值的不同情况下,UQR的估计偏差和均方根误差都很小,UQR是含固定效应面板数据的有效估计办法。当样本量增加或者估计参数真实值数量级增大的情况下,UQR估计会更有效。UQR估计在0.5分位点的估计效果最佳,低分位点的估计效果优于高分位点的估计效果。最后,根据各省市的消费收入数据进行了实证研究,发现UQR能更好地解释实际的消费情况。

全文