摘要
传统的最小均方误差(LMS)算法难以同时获取较快的收敛速度和较小的稳态误差,而变步长LMS算法可获得二者之间的平衡。对已有的一些变步长LMS算法进行了分析,在变系数步长(VFSS)算法的基础上,引入输入信号因子,并建立步长因子与误差信号之间新的非线性函数关系,提出一种改进的变步长LMS算法,该算法不仅继承了VFSS算法在低信噪比环境下抗噪声性能好的特点,而且能够快速跟踪系统的变化,仿真结果表明改进算法的性能优于现有算法。
- 单位
传统的最小均方误差(LMS)算法难以同时获取较快的收敛速度和较小的稳态误差,而变步长LMS算法可获得二者之间的平衡。对已有的一些变步长LMS算法进行了分析,在变系数步长(VFSS)算法的基础上,引入输入信号因子,并建立步长因子与误差信号之间新的非线性函数关系,提出一种改进的变步长LMS算法,该算法不仅继承了VFSS算法在低信噪比环境下抗噪声性能好的特点,而且能够快速跟踪系统的变化,仿真结果表明改进算法的性能优于现有算法。