摘要

社区发现是复杂网络研究领域的一个重要问题,传统社区发现方法是通过节点间连边紧密程度而实现社区划分的,无法纳入节点的非结构属性.对此,文章基于变分图自编码器(VGAE),提出了一种兼顾节点连边与属性信息的网络社区发现方法(VGAE-INA,VGAE incorporating node attributes),并利用两个不同领域的现实网络数据进行了验证.研究结果表明,通过无监督的迭代学习,文章所提出的融合节点属性特征的变分图自编码器方法可以在同时考虑节点连边关系和节点属性特征情况下有效完成网络社区探查的任务.