摘要

为了实现稻瘟病的快速、准确和无损检测,力求构建稻瘟病害预测模型。根据水稻叶片相对病害面积将稻瘟病划分为3个等级,通过激光诱导法采集不同病害等级的活体水稻叶片叶绿素荧光光谱。选取502830 nm波段激光诱导叶绿素荧光光谱(LICF)作为研究对象,利用Savitzky-Golay平滑法(SG)和一阶导数变换(FDT)对光谱信息进行预处理,通过主成分分析(PCA)方法获取经SG-FDT预处理后光谱的特征向量,根据累积贡献率和方差选取前3个主成分进行分析。将试验样本分为建模样本和检验样本,以稻瘟病害等级为预测指标,利用建模样本的133片叶片的光谱和病害信息分别结合判别分析(DA)、多类逻辑回归分析(MLRA)和多层感知器(MLP)建立稻瘟病的预测模型,利用检验样本的89片叶片的光谱和病害信息对所建模型进行预测检验,完成对PCA-DA、PCA-MLRA和PCA-MLP的对比寻优。结果表明,PCA-DA,PCAMLRA和PCA-MLP模型均能完成对稻瘟病害的预测,但PCA-MLP模型的平均预测准确率能够达到91.7%,相比PCA-DA和PCA-MLRA模型,在稻瘟病害3个等级上均具有较好的分类和预测能力。

  • 单位
    长春科技学院; 长春市农业科学院