摘要

在极化合成孔径雷达(synthetic aperture radar, SAR)图像理解和解译中,地物分类是重要的应用方向之一.为了研究多角度极化SAR图像的地物分类,文中基于极化统计特征差异性顺序,给出了多角度极化分解特征序列构建方法.首先,采用基于Wishart分布的统计量对非各向同性散射中心进行检测,并逐像素生成基于散射特征差异的新序列图像.然后,面向多种极化特征分解模型,提出通用的多角度极化特征一阶差分序列描述方法及编码方法,包括Yamaguchi四分量分解、Krogager分解以及H/A/Alpha分解,得到多维特征参数序列.最后,通过两种方法对比后最终选用支持向量机(support vector machine, SVM)方法对特征序列进行分类.通过机载P波段极化SAR开展360°观测试验,验证了该方法的有效性,并展示出在地物分类方面的应用潜力.