摘要

川藏铁路康定至理塘段地处青藏高原东部边缘,区域内地形地貌多变、地质构造复杂,滑坡灾害极其发育,严重威胁着川藏铁路康定至理塘段的规划建设和未来安全运行。因此,选取高程、坡向、平面曲率、剖面曲率、地形起伏度、地表切割度、地形湿度指数、归一化植被指数、岩性、距断层距离、距河流距离、距道路距离共计12个影响因子构建滑坡空间数据库,采用深度学习的卷积神经网络(convolutional neural network, CNN)模型进行滑坡易发性评价,根据易发性指数将研究区划分为极高易发区(13.76%)、高易发区(14.00%)、中易发区(15.86%)、低易发区(18.17%)、极低易发区(38.21%)五个等级,并与人工神经网络(artificial neural network, ANN)模型进行对比。结果表明,CNN模型的评价精度AUC(0.87)大于ANN(0.84)模型,且极高易发区的频率比值高于ANN模型,CNN模型在本研究区有着更高的预测能力;极高和高易发区主要分布在水系较为发育的地区,沿着雅砻江和其它河流两侧2 km范围内呈带状分布。滑坡易发性评价结果较好地反映了研究区滑坡灾害发育的分布现状,能够为该区的川藏铁路建设和未来安全运行过程中的防灾减灾工作提供科学的依据。

  • 单位
    西部矿产资源与地质工程教育部重点实验室; 长安大学

全文