摘要
为了对鸡种蛋胚胎进行雌雄识别,探究利用紫外-可见-近红外透射光谱进行鸡胚雌雄识别的可行性,搭建了鸡种蛋透射光谱检测系统,采用横向和竖向大头朝上2种放置方式获取210枚鸡种蛋孵化0~15 d的光谱,光谱范围为360~1 000 nm。构建极限学习机(ELM)鸡胚雌雄识别模型,通过比较不同放置方式和孵化天数下模型的识别准确率,发现竖向放置且孵化第7 d的识别效果最好;将竖向放置孵化第7 d的光谱初步分为紫外(360~380 nm)、可见光(380~780 nm)、近红外(780~1 000 nm)、紫外-可见光(360~780 nm)和全波段(360~1 000 nm)5个不同的波段范围来分析,预测集准确率分别为82.86%, 77.14%, 75.71%, 84.29%和81.43%,筛选出360~780 nm的紫外-可见光波段为有效波段;在紫外-可见光(360~780 nm)波段,采用多元散射校正(MSC)去噪,并用竞争性自适应重加权采样算法(CARS)和连续投影算法(SPA)筛选特征波长降维,建立不经筛选特征波长、 CARS筛选特征波长和SPA筛选特征波长的3种ELM模型。其中不经筛选特征波长的ELM模型识别效果最好,但输入变量最多,隐含层神经元为680且激活函数为sig时,预测集准确率为84.29%。SPA筛选特征波长的ELM模型识别效果次之,输入变量有9个,隐含层神经元为840且激活函数为hardlim时,预测集准确率为81.43%。CARS筛选特征波长的ELM模型识别效果最差,输入变量有27个,隐含层神经元为100且激活函数为sig时,预测集准确率为78.57%;用遗传算法(GA)优化ELM模型的权值变量和隐含层阈值,不经筛选特征波长建立的GA-ELM模型,预测集准确率为87.14%, SPA筛选特征波长建立的GA-ELM模型,预测集准确率为87.14%, CARS筛选特征波长建立的GA-ELM模型,预测集准确率为81.43%。紫外-可见光波段不经筛选特征波长的GA-ELM模型识别效果和经SPA筛选特征波长的GA-ELM模型相同,表明SPA筛选的特征波长变量能够有效反映360~780 nm波段的信息, SPA使用的变量数仅占紫外-可见光波段的2.14%,因此,雌雄识别最佳模型为紫外-可见光波段经SPA筛选特征波长的GA-ELM模型,预测集准确率为87.14%,其中,雌性识别率为88.57%,雄性识别率为85.71%,单个样本平均判别时间0.080 ms。结果表明紫外-可见透射光谱技术和ELM模型为孵化早期鸡胚蛋雌雄识别提供了一种可行方法。
-
单位华中农业大学; 农业部