首先,给出了剩余交半格的概念,通过对其性质的研究,证明了剩余交半格中的所有正则元构成的集合是交半格,并举例说明了剩余交半格中的所有正则元构成的集合不是剩余交半格;其次,证明了满足剩余交换律:x?(x→y)=y?(y→x)的正则剩余交半格是Wajsberg代数;最后,由剩余交换律:x?(x→y)=y?(y→x)得出了L是满足剩余交换律的MTL代数当且仅当L是BL代数。