摘要
为了提升社区发现算法速度和高精度命题,提出一种局部扩展标签传播算法与蚁群优化结合的重叠社区发现框架(ELPA-ACO)。利用局部扩展的标签传播社区发现算法快速获得蚁群初始信息素和位置;结合网络中节点的拓扑结构、内部标签属性、历史信息和节点的传播相互影响力等因子改进蚂蚁转移概率,进一步提高划分精度。在未知网络和真实网络上验证,ELPA-ACO算法可适应多种网络划分,无论是速度还是精度都有显著提高。
-
单位广东工业大学; 云南师范大学文理学院; 广东工业大学华立学院