摘要

选择极大似然(ML)方法进行DOA估计时,由于进行了多维搜索,导致运算效率较慢,所以提出一种改进的蝗虫优化算法优化极大似然,引入了柯西变异算子和重心反向解,将迭代后的位置再次更新.一方面加速了极大似然估计的搜索效率,另一方面避免了常规蝗虫优化算法容易陷入局部最优的问题.仿真实验表明,与现有的大多数优化方法相比,提出的方法对信噪比的泛化能力更强;在不同信源个数时都可以保证其估计效果的精确度,将真实值与预测值的误差控制在±1°内;在相干信号下,混合变异GOA-ML方法也具有较强竞争力.综合各类评价指标来看,混合变异蝗虫(GOA)极大似然方法拟合优度更好,稳定性更高.