摘要
带预测误差补偿的NARMA-L2模型是由NARMA模型在零工作点处由一阶泰勒展开逼近的,其误差项取值较大。通过分析NARMA-L2模型存在误差项值较大的问题,利用自适应滤波动态工作点处由一阶泰勒展开逼近NARMA模型,构建改进的NARMA-L2模型,采用BP神经网络辨识改进NARMA-L2模型的参数,基于广义目标函数与改进的NARMA-L2模型给出了非线性系统的隐式自校正控制器算法,以直接极小化指标函数的自适应优化算法寻优BP神经网络的连接权重值,获得了一种新的在线学习算法。研究表明,改进模型误差值较传统NARMA-L2模型小,控制算法使系统具有优良的控制效果。
- 单位