摘要
高铁肌红蛋白(metmyoglobin,MetMb)在肉中所占的比例直接影响肉的色泽。利用可见近红外光谱(ViS-NIR)采集到的滩羊肉数据与化学计量学方法相结合,探讨高光谱成像快速无损检测滩羊肉中MetMb含量的可行性以及开发滩羊肉中MetMb含量的定量函数。采用分光光度计测量滩羊样本的MetMb含量,使用ENVI4.8软件提取贮藏期间200个样本光谱图像的感兴趣区域,将获取的光谱数据与化学值相结合,定量解释两者的相关性;利用光谱理化值共生距离法,按照3∶1的比例划分样本,对校准模型进行独立(外部)验证;采用乘法散射校正(multiple scattering correction, MSC)、一阶导数(first derivative, 1st derivative)和去趋势(De-trending)等3种不同的方法对原始光谱数据进行预处理,以消除噪音对原始光谱的干扰;竞争性自适应加权算法(competitive adaptive reweighted sampling, CARS)、区间变量迭代空间收缩方法(interval variable iterative space shrinkage approach,iVISSA)、间隔随机蛙跳算法(interval random frog, IRF)、变量组合集群分析法(variables combination population analysis, VCPA)、连续投影算法(successie projection algorithm, SPA)以及IRF+SPA、 iVISSA+SPA组合方法被用于光谱的变量选择和优化;使用典型的线性建模方法:偏最小二乘回归(partial least square regression,PLSR)建立全波段和特征波段的预测模型,确定最佳模型;通过最佳模型建立滩羊肉中MetMb含量的定量函数。结果表明:原始光谱模型性能较好于3种预处理光谱的模型性能,其R■=0.852,R■=0.788, RMSEC=4.604, RMSEP=5.729;原始光谱经过CARS, VCPA, IRF, SPA, iVISSA, IRF+SPA, iVISSA+SPA等方法分别选出16, 13, 48, 14, 45, 10和11个特征波长,占总波长的12.8%, 10.4%, 38.4%, 11.2%, 36%, 8%和8.8%。通过对比PLSR模型, IRF+SPA-PLSR模型性能最佳,R■=0.808,R■=0.826, RMSEC=5.253, RMSEP=5.149, IRF+SPA算法不仅减少了计算时间,而且生成了更准确,更稳健的预测模型;最后,基于IRF+SPA算法建立的MetMb含量的定量函数为:■。表明ViS-NIR光谱对滩羊肉中MetMb含量的快速无损检测是可行的,开发的定量函数为快速测定滩羊肉中MetMb的含量提供参考。
- 单位