摘要

为了克服樽海鞘群算法(Salp Swarm Algorithm, SSA)求解准确性不足和易过早收敛的缺点,提出了一种多策略改进的樽海鞘群算法(MISSA)。引入Baker混沌映射生成樽海鞘群的初始种群,以提高初始个体的均匀性;将T分布策略应用到食物源位置公式中,对原始位置进行随机干扰,引导樽海鞘个体向最优解空间运动;在跟随者位置更新公式中引入不完全Γ函数的自适应权重,以改善算法的局部和全局搜索能力。将改进算法在8个测试函数上进行仿真实验,并与不同的群智能算法进行了比较。结果表明,改进算法具有更好的全局和局部搜索性能以及更高的搜索精度。

全文