摘要

在恶意软件预测任务中,针对训练数据不足及模型无法突出重要时序信息的问题,提出一种使用TS-GAN对数据进行扩增和使用多注意力Bi-LSTM模型进行预测的方案。多注意力Bi-LSTM由三层网络组成,利用Bi-LSTM层自动学习恶意软件并输出各时间步的隐状态,通过多注意力层为各时间步隐状态分配权重突出重要时序信息,使用预测判别层实现恶意软件良性或恶意的预测。实验结果表明,该方法可以在恶意软件执行前4秒内以95.8%的预测准确率实现对恶意软件的预测,优于其它方法。

全文