摘要
针对当前稻飞虱图像识别研究中自动化程度较低、识别精度不高的问题,提出了一种基于迁移学习和Mask R-CNN的稻飞虱图像分类方法。首先,根据稻飞虱的生物特性,采用本团队自主研发的野外昆虫图像采集装置,自动获取稻田稻飞虱及其他昆虫图像;采用VIA为数据集制作标签,将数据集分为稻飞虱和非稻飞虱两类,并通过迁移学习在Res Net50框架上训练数据;最后,基于Mask R-CNN分别对稻飞虱、非稻飞虱、存在干扰以及存在黏连和重合的昆虫图像进行分类实验,并与传统图像分类算法(SVM、BP神经网络)和Faster R-CNN算法进行对比。实验结果表明,在相同样本条件下,基于迁移学习和Mask R-CNN的稻飞虱图像分类算法能够快速、有效识别稻飞虱与非稻飞虱,平均识别精度达到0. 923,本研究可为稻飞虱的防治预警提供信息支持。
- 单位