摘要

针对点云配准过程中点云数据量大、配准时间长、配准精度低的问题,提出了一种基于内部形态描述子(intrinsic shape signatures, ISS)和三维形状上下文描述子(3D shape context, 3DSC)的点云配准算法。该方法首先使用体素网格滤波器对点云进行下采样,接着利用ISS算法提取特征点,并通过3DSC进行描述,然后通过改进的随机采样一致性(randon sample consensus, RANSAC)算法进行粗匹配,最后用改进的迭代最近点算法(iterative closest point, ICP)对点云进行精匹配。试验结果表明,与基于ISS+3DSC的三维正态分布变换(normal distribution transformation, NDT)算法和基于采样一致性初始配准(sample consensus initial aligment, SAC-IA)的ICP算法相比,本文算法的配准精度及效率更高,且对于数据量大的点云也有较好的匹配效果。