摘要
为了解决行星齿轮箱振动信号存在噪声干扰和特征提取困难的问题,提出一种基于水母搜索优化变分模态提取(JS-VME)、深度置信网络(DBN)和监督型马氏距离的均匀流形逼近与投影算法(MS-UMAP)的行星齿轮箱故障诊断方法。采集行星齿轮箱的振动信号,利用JS-VME对其进行预处理,获得相关性较强的期望IMF分量;然后将该IMF分量应用DBN提取特征向量,构建高维故障特征集;采用MS-UMAP进行维数约减,获得低维、敏感的故障特征;将低维故障特征集应用水母搜索优化核极限学习机(JS-KELM)判别故障类型。行星齿轮箱故障诊断实验结果表明:与UMAP、t-SNE、Isomap、LPP、W-Isomap、LLE、LTSA和MDS等方法相比,MS-UMAP算法对JS-VME-DBN的特征提取结果有着最佳的降维效果,所提方法对行星齿轮箱的裂纹、磨损和缺齿等故障的识别率达到了100%,具有一定的有效性。
- 单位