摘要

针对差分进化(DE)算法存在的早熟收敛与搜索停滞问题,提出了自适应合并与分裂的多种群差分进化算法。算法将种群划分为多个子种群,引入子种群优劣因子来评价种群的优劣性,实现种群间的自适应合并与分裂;对于种群中的各个个体,采取基于精英池学习的变异算子,结合优秀个体进行自适应学习调整,使算法达到全局搜索与局部搜索能力的平衡;在算法后期引入扰乱策略,保证算法快速收敛的同时有效地跳出局部极值点,提高算法寻优的精度。在30个标准测试函数的实验结果表明,改进算法能有效解决早熟和陷入局部最优的问题。

  • 单位
    武汉科技大学; 智能信息处理与实时工业系统湖北省重点实验室

全文