摘要

车道线检测作为智能驾驶领域的关键技术,在车道偏离预警(LDW)和车道保持(LK)、车道变换(LC)和前向碰撞预警(FCW)、自适应巡航控制(ACC)等先进驾驶辅助系统(ADAS)中发挥重要作用。利用视觉的方法在车道线检测技术研究中占据主导地位,也是未来的发展方向。综述了近二十年来利用视觉的车道线检测方法的研究进展。首先简述了车道的分类及其特征,阐明了车道线检测的一般流程及面临的挑战;重点阐述了检测车道线的基于特征、基于模型、基于学习及其他方法的检测原理,评述了其优缺点并进行了分析与比较;随后介绍了车道线检测的常用数据集及性能评估指标;最后针对车道线检测方法目前存在的问题,对进一步的研究方向进行了展望。