摘要

BP网络模型己成为神经网络的重要模型之一,在很多领域得到了应用,但它也存在一些不足。如从数学上看,它是一个非线性优化问题,这就不可避免地存在局部极小点问题;BP网络学习算法收敛速度较慢,且收敛速度与初始权值的选择有关;网络的结构设计,即隐层及节点数的选择尚无理论直到,而是根据经验选取。本文针对BP算法局部极值的缺点,考虑将遗传算法和BP算法结合,进行对BP神经网络进行优化。用遗传算法优化神经网络,主要包括三个方面:连接权的进化、网络结构的进化,学习规则的进化。

全文